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ABSTRACT

The on-chip line buffer dominates the total area and power

of line-based 2-D DWT. Therefore, the line buffer wordlength

has to be carefully designed to maintain the quality level due

to the dynamic range growing and the round-off errors. In this

paper, a complete analysis methodology is proposed to derive

the required wordlength of line buffer given the desired qual-

ity level of reconstructed image. The proposed methodology

can guarantee to avoid overflow of coefficients, and the dif-

ference between predicted and experimental quality level is

averagely 0.06 dB in terms of PSNR.

1. INTRODUCTION

2-D DWT is an efficient tool for image and video processing.

The line-based implementation [1] can achieve minimum ex-

ternal memory access and has become the mainstream of 2-D

DWT VLSI implementation.

Fig. 1 shows a generic scheme for single-level line-based

2-D DWT in column-row order. The line buffer needed in

line-based DWT can be decomposed into data buffer and tem-

poral buffer as shown in Fig. 1 [2]. The data buffer can be

reduced into only few words of registers [3]. Therefore, the

focus of this paper is the wordlength of the temporal buffer.

Temporal buffer is used to buffer the intrinsic register val-

ues of every column for column DWT as illustrated in Fig. 2.

Therefore, the temporal buffer contains (Image Width × Num-
ber of Intrinsic Registers) intrinsic register values. This large

size makes temporal buffer be the dominant factor of both

area and power in 2-D DWT processor [4]. The wordlength of

temporal buffer thus has to be carefully designed. However,

there are two phenomena that make the wordlength of tempo-

ral buffer in multi-level 2-D DWT hard to be determined.

The first phenomenon is the dynamic range growing ef-

fect. In multi-level DWT, the coefficients are iteratively fil-

tered for several times. This may lead to variations in signal

dynamic range. If overflow occurs, the reconstructed image

quality will be severely degraded.

The second phenomenon is the round-off errors which are

induced by transferring the floating-point data into data with

fixed wordlength. The errors in DWT introduce an upper
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Fig. 1. Line-based scheme for single-level column-row 2-D DWT.
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Fig. 2. An example of the temporal buffer scheme. There are 4

words of intrinsic register in lifting-based (9,7) filter, and the tempo-

ral buffer contains (4×Image Width) intrinsic register values.

bound of quality level in image/video system. To control the

wordlength such that the reconstructed image can achieve the

desired quality level is thus important.

Recently there are some reports presented for wordlength

designing [5, 6]. Experimental methods in [5] can not guar-

antee to achieve desired quality level. In [6], the round-off

errors of only 1-D DWT are analyzed. Only one error source

at each level is considered, and the distortion can not map

back to image domain. Moreover, the above works do not

take the dynamic range growing effects into consideration.

In this paper, a complete analysis methodology for deriv-

ing required line-buffer wordlength in multi-level 2-D DWT

is presented. Not only round-off errors but dynamic range

growing effects are analyzed. Wordlength derived with the

proposed dynamic range analysis methodology can be proved

to guarantee the avoidance of overflow. The wordlength re-

quired to achieve the desired quality level in reconstructed

image can also be derived with the proposed round-off error

analysis with a simple distortion model.

This paper is structured as follows. The proposed dy-

namic range analysis methodology and round-off-error analy-

sis methodology are presented in Section 2 and 3, respec-

tively. The experimental results verifying the proposed method-
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Fig. 3. The Noble identity 1 applied in two-level 1-D DWT.

ologies are presented in Section 4. Finally, Section 5 con-

cludes this work.

2. THE PROPOSED DYNAMIC RANGE ANALYSIS
METHODOLOGY

2.1. Dynamic Range Analysis of FIR Filters

Suppose a sequence x(n) with dynamic range within [−S, S]
is fed into a FIR filter H(z) =

∑T
i=−L h(i)z−i , the output is

y(n) =
∑T

i=−L h(i)x(n − i). Therefore, the maximum pos-

sible dynamic range at filter output will be S×∑T
i=−L |h(i)|.

The dynamic range gain of a system is defined as the maxi-
mum possible value of (output dynamic range/input dynamic
range). For the dynamic range gain G of this filter:

G =
T�

i=−L

|h(i)| (1)

Consider the case of two cascaded FIR filters H1(z) =
∑T1

i=−L1

(h1(i)z−i) and H2(z) =
∑T2

i=−L2
h2(i)z−i, these two filters

can be merged into an equivalent FIR filter Htotal(z) with

coefficients htotal(n) =
∑T1

i=−L1
h1(i)h2(n − i). The total

dynamic range gain of these two filters Gtotal is:

Gtotal = � T1+T2
n=−(L1+L2) |htotal(n)|

= � T1+T2
n=−(L1+L2) | � T1

i=−L1
h1(i)h2(n − i)| (2)

2.2. LL-band Dynamic Range Analysis

The coefficients of LL-band are analyzed because the dy-

namic range of coefficients of (n − 1)-th level LL band will

affect the dynamic range of intrinsic registers in n-th level.

Figure 3 shows the Noble identity 1 applied in two-level 1-D

DWT. By applying Noble identity, the operations from signal

input to each subbands can be equivalent to one filter and one

downsampling that will not affect the dynamic range.

For example, if the lowpass filter is L(z) = 1
3z−1 + 1

2 +
1
3z, the dynamic range gain is | 13 | + | 12 | + | 13 | = 7

6 . Taking

both column and row directions into consideration, the dy-

namic range gain of first level LL-band is thus ( 7
6 )2 = 49

36 .

As for the second level LL-band, the Noble identity 1 has to

be applied. The equivalent filter is L(z)L(z2), and the cor-

responding dynamic range gain is 1.361. Therefore, the dy-

namic range gain in second level LL-band is 1.3612 = 1.853.

Having the equivalent filter of LL-band at each level, the dy-

namic range gains of LL-band in all levels can be obtained.
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Fig. 4. Hardware architecture of lifting-based (9,7) filter.
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Fig. 5. Analysis flow of the proposed dynamic range analysis

methodology.

2.3. Single Level Dynamic Range Analysis

Since DWT is a type of FIR filter, intrinsic register values can

be represented as linear combinations of input signal, and this

relationship can further be an equivalent FIR filter.

Take lifting-based (9,7) filter in Fig. 4 as an example,

there are four intrinsic registers values. Therefore, there are

four equivalent filters for column DWT. For example, the equiv-

alent filter for the intrinsic register ”R2” in Fig. 4 is a(z−1 +
z) + 1. Thus the corresponding filter gain is 2|a| + 1 =
4.17226. All filter gains from input to first-level intrinsic reg-

ister values in temporal buffer can thus be obtained.

2.4. Summary of the Proposed Dynamic Range Analysis
Methodology

To analyze the dynamic range gains of the intrinsic register

values of all levels will be a tedious work. A tight upper

bound of dynamic range gain of temporal buffer that can be

derived in a much simpler way is thus proposed in this sec-

tion.

Lemma 1 Assume two cascaded FIR filters H1(z) =
∑T1

i=−L1

h1(i)z−i and H2(z) =
∑T2

i=−L2
h2(i)z−i have filter gains

G1 and G2, respectively. The total filter gain Gtotal is smaller
than or equal to G1G2.

Proof
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Fig. 6. The proposed noise model of single-level DWT.

From Equ. 2:

Gtotal = � T1+T2
n=−(L1+L2) | � T1

i=−L1
h1(i)h2(n − i)|

≤ � T1+T2
n=−(L1+L2) � T1

i=−L1
|h1(i)h2(n − i)|

= ( � T1
i=−L1

|h1(i)|)( � T2
j=−L2

|h2(j)|)
= G1G2

(3)

Lemma 2 Let the dynamic range gain from input image to
temporal buffer be Gmax, then Gmax ≤ (maxm{G1Dm})×
(maxn{GLLn}), where G1Dm is the dynamic range gain of
the m-th intrinsic register value within single level, and GLLn

is the dynamic range gain from input image to the n-th level
LL-band.

Proof
The relationship from the input to one word in intrinsic

register value in n-th level can be taken as the cascade

of the relationship from input to (n − 1)-th level LL-

band and the relationship from (n − 1)-th level LL-

band to the intrinsic register value. Assume Gtotalm,n

be the filter gain from input to the m-th intrinsic regis-

ter value in n-th level column DWT. From lemma 1:

Gmax = maxm,n{Gtotalm,n}
= Gtotalm1,n1(∃m1, n1)
≤ G1Dm1GLLn1

≤ (maxm{G1Dm})(maxn{GLLn})
(4)

The analysis flow is shown in Fig. 5. GLLn can be ob-

tained from section 2.2, and G1Dm can be obtained from sec-

tion 2.3. With these two values, the upper bound of the dy-

namic range gain from input image to temporal buffer, Gmax,

can be obtained. Therefore, the wordlength needed to prevent

overflow can be obtained.

3. THE PROPOSED ROUND-OFF ERROR ANALYSIS
METHODOLOGY

In this section, a hierarchical model to estimate round-off er-

rors in reconstructed image is proposed, and it is a function of

the number of bits in fractional part of temporal buffer.

3.1. Model of Round-off Operations

The most basic element in the proposed error model is the
model of round-off operations. Once a round-off operation is
performed, an zero-mean uniformly-distributed and mutually-
independent additive error source is introduced, as the e1(t)
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Fig. 7. The noise power model of multi-level 2D DWT.

to e6(t) in Fig. 4. If there are n fractional bits to represent a
coefficient, for error sources {ei(t) : i = 1, 2, ...}:

E{ei(t1)ei(t2)} = 0, t1 �= t2 (5a)

E{ei(t1)ej(t2)} = 0 ∀t1t2, i �= j (5b)

E{ei(t)ei(t)} = σ2, σ2 = �
1

2n+1

− 1
2n+1

2nx2 dx =
2−2n

12
(5c)

3.2. Noise Power Model of Single-level 1-D DWT

To analyze the noise power at 1-D DWT output, the noise
sources are taken as real signals in the filter architecture. The
noise power can be evaluated from the expression of noise
sources. For example, consider the contributions of noise
source e3(t) and e4(t) in Fig. 4 to the lowpass output, the
expression of these two noise sources (eLP (t)) is:

eLP (t) = Kd(e3(t) + e3(t − 1)) + Ke4(t) (6)

In this case, the estimated noise power E{e2
LP (t)} can be

derived from the assumptions in Eq. 5:

E{e2
LP (t)} = E{(Kd(e3(t) + e3(t − 1)) + Ke4(t))

2}
= K2d2E{e2

3(t) + e2
3(t − 1)} + K2E{e2

4(t)}
= (2K2d2 + K2)σ2

(7)

Thus the noise power induced by 1-D DWT can be calculated
in this way. If the input signal is with a known noise power,
this error will also be modelled as a noise source that satisfies
Eq. 5a and 5b. If the filter is H(z) =

∑T
i=−L hiz

−i and
the input noise power is Nin, the noise power at filter output
induced by input noise, N in

out, is:

N in
out = E{( � T

−L hiein(t − i))2} = � T
−L h2

i E{e2
in(t − i)}

= E{e2
in(t)} × � T

−L h2
i = Nin × PG

(8)

Where the PG is defined as the power gain of H(z). In the

proposed noise model, the input noise will be amplified by

PG after the filtering operation.

Figure 6a shows the proposed noise model of single level

1-D DWT. As discussed, the fixed-point hardware will intro-

duce round-off error power (NL, NH ), and the input noise

power will be amplified by noise power gains (PGL, PGH ).

3.3. Noise Power Model of Multi-level 2-D DWT

Figure 6b further shows the proposed noise model in single

level 2-D DWT. It is a cascade of noise models of 1-D DWT.

The proposed noise model shown in Fig. 7 for multi-level

2-D DWT consists of the cascade of the noise models of sin-

gle level DWT. The input noise power of n-th level is the the

LL-band noise power in (n−1)-th level. At the first level, the

input is the original image, the input noise power is therefore

zero.
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Fig. 8. Noble identity 2 applied in two-level 1-D IDWT.

Table 1. The estimated and the measured quality of reconstructed

image with different number of fractional bits.

Derived Upper Bound
Experimental Maximum

Dynamic Range
Lifting-based 731 (10bits) 549 (10bits)

convolution-based 241 (8bits) 233 (8bits)

3.4. Noise Power Analysis in Reconstructed Image

In section 3.3, the noise powers in all sub-bands are calcu-

lated. To estimate the corresponding noise power in recon-

structed image, noble identity 2 is utilized. As illustrated in

Fig. 8, the IDWT can be considered as upsampling, filtering,

and addition of each subband. Upsampling by n will make

the noise power became 1
n times, and the equivalent filter can

be modelled as a noise power gain as in section 3.2.

3.5. Summary of Round-off-error analysis

In summary, noise power gains (PGL, PGH ) can be obtained

with the DWT filter type. Noise power induced in 1-D DWT

(NL, NH ) can be obtained by analyzing the 1-D hardware

architecture. The model of single level 2-D DWT can be ob-

tained by cascading the 1-D noise models. The multi-level 2-

D DWT model can be obtained by cascading the single level

DWT models. By feeding zero noise power into the multi-

level DWT model, the noise power of each subbands can be

obtained. Finally, the noise power expression in reconstructed

image can be estimated by calculate the power gain of each

sub-band using noble identity 2. This noise power expression

is a function of the number of fractional bits of data because

the value of σ is defined as in Eq. 5c. The noise power in re-

constructed image is the mean-square-error of pixels and can

directly be mapped into PSNR. Therefore, the required num-

ber of fractional bits in temporal buffer can be obtained from

the required quality level in image domain.

4. EXPERIMENTAL RESULTS

Table 1 shows the derived dynamic range upper bound and

the experimental maximum dynamic range when random sig-

nals are taken as input. Two hardware architectures of DWT,

convolutional-based and lifting-based architectures are imple-

mented by Verilog HDL. As shown in table 1, the proposed

dynamic range upper bound and the experimental maximum

dynamic range yield the same number of required bits in both

architectures. Therefore, the proposed upper bound of dy-

namic range is tight enough in designing the wordlength.

Table 2 shows the estimated and the measured quality of

Table 2. The estimated and the measured quality (in PSNR(dB)) of

reconstructed images with different number of fractional bits. The

average and the maximum prediction error are 0.06 dB and 0.43 dB.

Lifting-based
Fractional Part lena baboon lake pepper average Predicted difference

2 bit 52.21 52.27 52.38 52.35 52.30 52.41 0.11
3 bit 58.36 58.25 58.00 58.26 58.21 58.43 0.21
4 bit 64.35 64.43 64.31 64.29 64.34 64.45 0.10

convolution-based
Fractional Part lena baboon lake pepper average Predicted difference

2 bit 49.43 49.80 49.31 49.55 49.52 49.66 0.14
3 bit 55.83 55.76 55.80 55.77 55.79 55.68 -0.11
4 bit 61.75 61.81 61.77 61.79 61.78 61.70 -0.08

reconstructed image with different number of fractional bits

in temporal buffer. As shown in table 2, the average and

the maximum prediction error of proposed precision analysis

methodology are 0.06 dB and 0.43 dB, respectively. There-

fore, the proposed methodology can provide a good reference

for designing the number of fractional bits in temporal buffer.

5. CONCLUSION

Line buffer dominates the area and power in line-based 2-D

DWT. In this paper, design methodology for the wordlength

of line buffer is proposed. The proposed dynamic range analy-

sis methodology can provide a tight upper bound and guaran-

tee to prevent the overflow in line buffer. The proposed round-

off error model can predict the image-domain quality level

with averagely 0.06 dB difference, and the required fractional

wordlength can be obtained from the desired quality level.

Both proposed methodologies are simple to be performed.
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